郑州小升初常考的13种规范题,谁看谁受益!
正方体展开图
正方体有6个面,12条棱,当沿着某棱将正方体剪开,可以得到正方体的展开图形,很显然,正方体的展开图形不是独一的,但也不是无限的,事实上,正方体的展开图形有且只有11种,11种展开图形又可以分为4种类型:
(1)141型
中间一行4个作侧面,上下两个各动作上下底面,共有6种基本图形。
(2)231型
中间一行3个作侧面,共3种根基图形。
(3)222型
中间两个面,只有1种根基图形。
(4)33型
和差问题
已知两数的和与差,求这两个数。
【口诀】
和加上差,越加越大;
除以2,便是大的;
和减去差,越减越小;
除以2,便是小的。
例:已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。
鸡兔同笼问题
【口诀】
除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24
求鸡时,假设全是兔,则鸡数 =(4X36-120)/(4-2)=12
(1)加水稀释
【口诀】
糖水减糖水,便是加糖量。
例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?
(2)加糖浓化
糖水减糖水,求出便解题。
例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?
加糖先求水,原来含水为:20X(1-15%)=17(千克)
水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)
糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)
(1)相遇问题
【口诀】
相遇那一刻,路程全走过。
除以速度和,就把时间得。
例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?
(2)追及问题
时间就求对。
例:姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上?
已知整体求部分。
【口诀】
家要众人合,分家有原则。
分母比数和,分子自己的。
和乘以比例,就是该得的。
例:甲乙丙三数和为27,甲;乙:丙=2:3:4,求甲乙丙三数。
分母比数和,即分母为:2+3+4=9;
分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。
【口诀】
我的比你多,倍数是因果。
分子实际差,分母倍数差。
商是一倍的,乘以各自的倍数,
两数便可求得。
例:甲数比乙数大12,甲:乙=7:4,求两数。
先求一倍的量,12/(7-4)=4,
所以甲数为:4X7=28,乙数为:4X4=16。
【口诀】
工程总量设为1,
1除以时间就是工作效率。
单独做时工作效率是自己的,
一齐做时工作效率是众人的效率和。
1减去已经做的便是没有做的,
没有做的除以工作效率就是结果。
例:一项工程,甲单独做4天完成,乙单独做6天完成。甲乙同时做2天后,由乙单独做,几天完成?
【口诀】
植树多少颗,要问路如何?
直的减去1,圆的是结果。
例1:在一条长为120米的马路上植树,间距为4米,植树多少颗?
例2:在一条长为120米的圆形花坛边植树,间距为4米,植树多少颗?
【口诀】
全盈全亏,大的减去小的;
一盈一亏,盈亏加在一起。
除以分配的差,
结果就是分配的东西或者是人。
例1:小朋友分桃子,每人10个少9个;每人8个多7个。求有多少小朋友多少桃子?
例2:士兵背子弹。每人45发则多680发;每人50发则多200发,多少士兵多少子弹?
例3:学生发书。每人10本则差90本;每人8 本则差8本,多少学生多少书?
【口诀】
每牛每天的吃草量假设是份数1,
A头B天的吃草量算出是几?
M头N天的吃草量又是几?
大的减去小的,除以二者对应的天数的差值,
结果就是草的生长速率。
原有的草量依此反推。
公式就是A头B天的吃草量减去B天乘以草的生长速率。
将未知吃草量的牛分为两个部分:
一小部分先吃新草,
个数就是草的比率;
有的草量除以剩余的牛数就将需要的天数求知。
例:整个牧场上草长得一样密,一样快。27头牛6天可以把草吃完;23头牛9天也可以把草吃完。问21头多少天把草吃完。
每牛每天的吃草量假设是1,则27头牛6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207;
大的减去小的,207-162=45;二者对应的天数的差值,是9-6=3(天)
结果就是草的生长速率。所以草的生长速率是45/3=15(牛/天);
原有的草量依此反推。
公式就是A头B天的吃草量减去B天乘以草的生长速率。
所以原有的草量=27X6-6X15=72(牛/天)。
将未知吃草量的牛分为两个部分:
一小部分先吃新草,个数就是草的比率;
剩下的21-15=6去吃原有的草,
【口诀】
岁差不会变,同时相加减。
岁数一改变,倍数也改变。
抓住这三点,一切都简单。
例1:小军今年8 岁,爸爸今年34岁,几年后,爸爸的年龄的小军的3倍?
已知差及倍数,转化为差比问题。
例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?
岁差不会变,今年的岁数差13-9=4几年后也不会改变。
几年后岁数和是40,岁数差是4,转化为和差问题。
【口诀】
余数有(N-1)个,最小的是1,
最大的是(N-1)。
周期性变化时,不要看商,只要看余。
例:如果时钟现在表示的时间是18点整,那么分针旋转1990圈后是几点钟?
龙凤课堂自成立以来,一直秉承“本本分分做教育、踏踏实实育英才”的教育理念,十余年来专注小升初、中考、高考等升学考试辅导。专业的师资教务团队,优雅舒适的学习环境,为孩子提分做好充分的准备。
本文链接: https://www.yizhekk.com/1249228274.html