面临小升初,在家怎么学数学?这些公式定理界说大全,建议打印收藏

面临小升初,在家怎么学数学?这些公式定理定义大全,建议打印收藏

点击“蓝字”关注咱们,获取1元两次试听课


第一部分:观念


1、加法交换律:两数相加替换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,替换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分手同这个数相乘,再把两个积相加,结果不变。

如:(2+4)×5=2×5+4×5


6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。   O除以任何不是O的数都得O。

简便乘法:被乘数、乘数末尾有o的乘法,可以先把o前面的相乘,零不列入运算,有几个零都落下,添在积的末尾。

7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个等同的数,等式仍然成立。

8、什么叫方程式?答:含有未知数的等式叫方程式。

9、 什么叫一元一次方程式?答:含有一个未知数,而且未知数的次 数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

10、分数:把单位“1”平均分成若干份,表明这样的一份或几分的数,叫做分数。


11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母稳定。异分母的分数相加减,先通分,然后再加减。

12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。

异分母的分数相比较,先通分然后再较为;若分子相同,分母大的反而小。

13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14、分数乘分数,用分子相乘的积作份子,分母相乘的积作为分母。

15、分数除以整数(0除外),等于分数乘以这个整数的倒数。


16、真分数:分子比分母小的分数叫做真分数。

17、假分数:分子比分母大或者分子和分母相当的分数叫做假分数。假分数大于或等于1。

18、带分数:把假分数写成整数和真分数的形式,叫做带分数。

19、分数的基本性质:分数的份子和分母同时乘以或除以同一个数

(0除外),分数的大小不变。

20、一个数除以分数,即是这个数乘以分数的倒数。


21、甲数除以乙数(0除外),即是甲数乘以乙数的倒数。

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

分数的乘法则:用分子的积做份子,用分母的积做分母。

22、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

比的前项和后项同时乘以或除以一个等同的数(0除外),比值不变。

23、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

24、比例的基本性质:在比例里,两外项之积即是两内项之积。

25、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18


26、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

27、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的瓜葛就叫做反比例关系。 如:x×y = k( k一定)或k / x = y

28、百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

29、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。

30、把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。


31、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

32、把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

33、要学会把小数化成分数和把分数化成小数的化发。

34、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)

35、互质数:  公约数只有1的两个数,叫做互质数。


36、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

37、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)

38、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)

39、最简分数:分子、分母是互质数的分数,叫做最简分数。

40、分数计算到最后,得数必须化成最简分数。


41、个位上是0、2、4、6、8的数,都能被2整除,即能用2进行

42、约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。

43、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。

44、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

45、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。


46、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)

47、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。

48、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

49、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3。141414

50、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如圆周率:3。141592654


51、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3。141592654……

52、什么叫代数?代数就是用字母代替数。

53、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c


第二部分:定义定理


一、算术方面

1.加法交换律:两数相加交换加数的位置,和不变。

2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3.乘法交换律:两数相乘,交换因数的位置,积不变。

4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。


6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。

7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8.方程式:含有未知数的等式叫方程式。

9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。


10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。

异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15.分数除以整数(0除外),等于分数乘以这个整数的倒数。


16.真分数:分子比分母小的分数叫做真分数。

17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

18.带分数:把假分数写成整数和真分数的形式,叫做带分数。

19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

20.一个数除以分数,等于这个数乘以分数的倒数。

21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。


第三部分:几何体


1、正方形

正方形的周长=边长×4   公式:C=4a

正方形的面积=边长×边长        公式:S=a×a

正方体的体积=边长×边长×边长  公式:V=a×a×a


2、正方形

长方形的周长=(长+宽)×2  公式:C=(a+b)×2

长方形的面积=长×宽   公式:S=a×b

长方体的体积=长×宽×高 公式:V=a×b×h


3、三角形

三角形的面积=底×高÷2。      公式:S= a×h÷2


4、平行四边形

平行四边形的面积=底×高        公式:S= a×h


5、梯形

梯形的面积=(上底+下底)×高÷2  公式:S=(a+b)h÷2


6、圆

直径=半径×2 公式:d=2r

半径=直径÷2 公式:r= d÷2

圆的周长=圆周率×直径  公式:c=πd =2πr

圆的面积=半径×半径×π        公式:S=πrr


7、圆柱

圆柱的侧面积=底面的周长×高。公式:S=ch=πdh=2πrh

圆柱的表面积=底面的周长×高+两头的圆的面积。   公式:S=ch+2s=ch+2πr2  圆柱的总体积=底面积×高。公式:V=Sh


8、圆锥

圆锥的总体积=底面积×高÷3=底面积×高×1/3 公式:V=1/3Sh  

三角形内角和=180度。 

平行线:同一平面内不相交的两条直线叫做平行线

垂直:两条直线相交成直角,像这样的两条直线,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。


第四部分:计算公式


数量关系式:

1、 每份数×份数=总数     总数÷每份数=份数      总数÷份数=每份数

2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数    几倍数÷倍数=1倍数

3、 速度×时间=路程       路程÷速度=时间         路程÷时间=速度

4、 单价×数量=总价       总价÷单价=数量        总价÷数量=单价

5、 工作效率×工作时间=工作总量      工作总量÷工作效率=工作时间     工作总量÷工作时间=工作效率


6、 加数+加数=和       和-一个加数=另一个加数

7、 被减数-减数=差     被减数-差=减数      差+减数=被减数

8、 因数×因数=积       积÷一个因数=另一个因数

9、 被除数÷除数=商      被除数÷商=除数      商×除数=被除数


和差问题的公式

(和+差)÷2=大数

(和-差)÷2=小数


和倍问题

和÷(倍数-1)=小数

小数×倍数=大数

(或者 和-小数=大数)


差倍问题

差÷(倍数-1)=小数

小数×倍数=大数

(或 小数+差=大数)


植树问题:

1 非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)


2 封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数


盈亏问题

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数


相遇问题

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间


追及问题

追及距离=速度差×追及时间

追及时间=追及距离÷速度差

速度差=追及距离÷追及时间


流水问题

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2


浓度问题:

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量


利润与折扣问题:

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%