复习一定要有目的,有重点,要对所学知识归纳,概括。一定要厘清每一个单元的重点是什么,形成学问网络体系。要分析之前做过的卷子和平时在课堂上作的听课笔记,把重要概念、重要公式牢记。
数学永远离不开习题,要每天做适当的练习,特别是重点和热点题型,从而保持思维的灵活和流畅。习题要具有开放性,创新性,使思维得到充分发展。要借助习题准确评估自己,自觉查漏补缺。面对复杂多变的题目,严密审题,弄清知识结构关系和知识规律,发掘隐含条件,多思多找,得出自己的经验。
要加强对以往错题的研究,找错误的原因,对易错知识点进行列举、易误用的方法进行归纳。找准了错误的缘故原由,就能对症下药,使犯过的错误不再发生。学习成绩优秀稳定的同学,往往很重视订正和收集错题。
有些题目,可以从不同的角度去分析,得到不同的解题方法。一题多解可以培养分析问题的能力,灵活解题的能力。不同的解题思路,列式不同,结果相同,收到殊途同归的效果。同时也给其他同学以启迪,开阔解题思路。有些应用题,虽题目形式不同,但它们的解题方法是一样的,故在复习时,要从不同的角度去思考,要对各类习题进行归类,这样才能使所学知识融会贯通,提高解题灵活性。
复习时如能注意检查的重要性,效果也会事半功倍。根据同学们平时易出现的情况,建议培养从这些地方检查的习惯:
检查列式是否正确。读题,看是否该用加法、减法、乘法或是除法来算。
列式正确后,看算式中的数字是否抄错,是否和题中给我们的一样。
用估算的方法检查得数,如259+487,我们一看至少要等于六七百,如果得数是四百多,或三百多等,那计算一定错了!
精确地再算一遍,以得到正确的结果。注意一定要笔算,五年级后,小数计算用口算很容易错,而且要规范使用草稿本,不要以为是草稿本就可以乱写乱画!往往一些数由于书写不规范,抄答案都抄错!
操作题,要用铅笔,尺、三角板画图,切不可信手乱画,画完后记得标明条件(如:直角符号、长2厘米、高3厘米等),是否和题目要求一致。
有的同学对审题重视不够,匆匆一看便急于下笔,以致题目的条件与要求都没吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量,从中获取尽可能多的信息,才能迅速找准解题方向。
在题量大、时间紧的情况下,“准”字显得尤为重要。只有“准”才能得分,只有“准”你才可以不必考虑再花时间检查。而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。所以,适当地慢一点、准一点,可多得一点分,相反,快一点、错一片,花了时间还得不到分。
拿到试卷后,就将全卷通览一遍,一般来说,应按先易后难、先简后繁的顺序作答。有时考题的顺序并不完全是难易的顺序,因此在答题时要合理安排时间,不要在某个卡住的题上打“持久战”,那样既耗费了时间又拿不到分,会做的题又被耽误了,也有一些看似容易的题也会有“咬手”的关卡,看似难做的题也有可能得分之处。所以考试中看到“容易”的题不可掉以轻心,看到新面孔的“难”题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。
试卷完成以后,对有怀疑的题目要进行检查,弥补答题时的不足或漏做的题目。
小学数学常用公式大全
(单位换算表)
大月(31天)有:1\3\5\7\8\10\12月
1世纪=100年 ;* 1年=365天 平年 ;* 一年=366天 闰年
一、三、五、七、八、十、十二是大月 大月有31 天
四、六、九、十一是小月小月 小月有30天
平年2月有28天 闰年2月有29天
1天= 24小时 * 1小时=60分 * 一分=60秒
1、长方形的周长=(长+宽)×2C=(a+b)×2
7、梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2
8、直径=半径×2d=2r半径=直径÷2r=d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2c=πd=2πr
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1立方米=1000立方分米 1立方分米=1000立方厘米
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米。1亩=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
9、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:x×y = k( k一定)或k / x = y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、要学会把小数化成分数和把分数化成小数的化发。
16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)
21、最简分数:分子、分母是互质数的分数,叫做最简分数。
-
-
个位上是0、2、4、6、8的数,都能被2整除,即能用2进行
-
约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414……
32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。
33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
35、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数 分别同这个数相乘,再把两个积相加,结果不变。
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
9、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
10、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
11、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
12、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
13、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
14、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
17、带分数:把假分数写成整数和真分数的形式,叫做带分数。
18、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
本文链接: https://www.yizhekk.com/1222167736.html