小学数学必背公式定理,你都记住了吗?

小学数学必背公式定理,你都记住了吗?

戳蓝色字南通招生关注我们哟!  

扫一扫周老师拉你入南通家长交流群(注明几升几年级)!

小学数学必背公式定理,你都记住了吗? 

小学生数学必背公式定理
要求:
小学一年级:九九乘法口诀表。学会基础加减乘。
小学二年级:完善乘法口诀表,学会除混合运算,基础几何图    形。
小学三年级:学会乘法交换律,几何面积周长等,时间量及单位,路程计算,分配律,分数小数。
小学四年级:线角自然数整数,素因数梯形对称,分数小数计算。
小学五年级:分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级:比例百分比概率,圆扇圆柱及圆锥

小学数学必背公式定理,你都记住了吗?


单位换算



长度单位换算
1千米=1000米 
  1米=10分米    1分米=10厘米    

1米=100厘米  1厘米=10毫米

面积单位换算
1平方千米=100公顷 
    1公顷=10000平方米  

1平方米=100平方分米     1平方分米=100平方厘米     

1平方厘米=100平方毫米


体(容)积单位换算
1立方米=1000立方分米 
   1立方分米=1000立方厘米          

1立方分米=1升    1立方厘米=1毫升          

1立方米=1000升

重量单位换算
1吨=1000 千克 
         1千克=1000克          

1千克=1公斤

人民币单位换算
1元=10角 
     1角=10分    1元=100分

时间单位换算
1世纪=100年 
       1年=12月        1日=24小时      

1时=60分         1分=60秒          1时=3600秒
大月(31天)有:1\3\5\7\8\10\12月 
         

小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天 
         

平年全年365天, 闰年全年366天


图形的面积体积公式


1、长方形的周长=(长+宽)×2    C=(a+b)×2
2、正方形的周长=边长×4 
         C=4a
3、长方形的面积=长×宽 
         S=ab
4、正方形的面积=边长×边长 
       S=a.a= a
5、三角形的面积=底×高÷2 
         S=ah÷2
6、平行四边形的面积=底×高 
         S=ah
7、梯形的面积=(上底+下底)×高÷2 
   S=(a+b)h÷2
8、 直径=半径×2 
   d=2r        半径=直径÷2    r= d÷2
9、 圆的周长=圆周率×直径=圆周率×半径×2 
         c=πd =2πr
10、圆的面积=圆周率×半径×半径 
         Ѕ=πr
11、长方体的表面积=(长×宽+长×高+宽×高)×2 
     S=(ab+ah+bh)×2
12、长方体的体积 =长×宽×高 
       V =abh
13、正方体的表面积=棱长×棱长×6 
     S =6a
14、正方体的体积=棱长×棱长×棱长 
   V=a.a.a= a
15、圆柱的侧面积=底面圆的周长×高 
   S=ch
16、圆柱的表面积=上下底面面积+侧面积 

 S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圆柱的体积=底面积×高 
        

 V=Sh        V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圆锥的体积=底面积×高÷3 
     

  V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3


基本定义与运算规律


数与数字的区别:数字(也就是数码),是用来记数的符号,通常用国际通用的阿拉伯数字 0~9这十个数字。其他还有中国小写数字,大写数字,罗马数字等等。数是由数字和数位组成。
0的意义:0既可以表示“没有”,也可以作为某些数量的界限。如温度等。0是一个完全有确定意义的数。0是最小的自然数,是一个偶数。00是最小的自然数,是一个偶数。是任何自然数(0除外)的倍数。0不能作除数。
自然数:用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……叫做自然数。简单说就是大于等于零的整数。
整数: 自然数都是整数,整数不都是自然数。

小数:小数是特殊形式的分数,所有分数都可以表示成小数,小数中的圆点叫做小数点。但是不能说小数就是分数。
混小数(带小数):小数的整数部分不为零的小数叫混小数,也叫带小数。
纯小数:小数的整数部分为零的小数,叫做纯小数。
有限小数:小数的小数部分只有有限个数字的小数(不全为零)叫做有限小数。
无限小数:小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。循环小数都是无限小数,无限小数不一定都是循环小数。例如,圆周率π也是无限小数。

循环小数:小数部分一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。例如:0.333……,1.2470470470……都是循环小数。
纯循环小数:循环节从十分位就开始的循环小数,叫做纯循环小数。
混循环小数:与纯循环小数有唯一的区别,不是从十分位开始循环的循环小数,叫混循环小数。
无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。

分数:表示把 “单位1”平均分成若干份,取其中的一份或几份的数,叫做分数。
真分数:分子比分母小的分数叫真分数。
假分数:分子比分母大,或者分子等于分母的分数叫做假分数。
带分数:一个整数(零除外)和一个真分数组合在一起的数,叫做带分数。带分数也是假分数的另一种表示形式,相互之间可以互化。

十进制:十进制计数法是世界各国常用的一种记数方法。特点是相邻两个单位之间的进率都是十。10个较低的单位等于1个相邻的较高单位。常说“满十进一”,这种以“十”为基数的进位制,叫做十进制。
加法:把两个数合并成一个数的运算,叫做加法,其中两个数都叫“加数”,结果叫“和”。
减法:已知两个加数的和与其中一个加数,求另一个加数的运算,叫做减法。减法是加法的逆运算。其中“和”叫“被减数”,已知的加数叫“减数”,求出的另一个加数叫“差”。
乘法:求n个相同加数的和的简便运算,叫做乘法。其中相同的这个数及n个这样的数都叫“因数”,结果叫“积”。
除法:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。除法是乘法的逆运算。其中“积”叫做“被除数”,已知的一个因数叫做“除数”,求出来的另一个因数叫做“商”。

加法交换律:两个数相加,交换两个加数的位置,和不变,叫做加法交换律。a+b=b+a
加法结合律:三个数相加,先把前二个数相加,再加第三个数,或者,先把后二个数相加,再加上第一个数,其和不变。这叫做加法结合律。 

 a+b+c=(a+b)+c=a+(b+c)

减法性质:在减法中,被减数、减数同时加上或者减去一个数,差不变。

a-b=(a+c)-(b+c)      ab=(a-c)-(b-c)

在减法中,被减数增加多少或者减少多少,减数不变,差随着增加或者减少多少。反之,减数增加多少或者减少多少,被减数不变,差随着减少或者增加多少。
在减法中,被减数减去若干个减数,可以把这些减数先加,差不变。 
  
a –b – c = a – (b + c)
乘法的交换律:两个数相乘,交换两个因数的位置,积不变,叫做乘法的交换律。

a×b = b×a
乘法的结合律:三个数相乘,先把前两个数相乘,再乘以第三个数,或者,先把后两个数相乘,再和第一个数相乘,积不变。这叫做乘法结合律。

a×b×c = a×(b×c)
乘法分配律:两个数的和(或差)与一个数相乘,等于把这两个数分别与这个数相乘,再把两个积相加(或相减)。这叫做乘法分配律。

(a + b) ×c= a×c + b×c  (a – b)×c= a×c – b×c
乘法的其他运算性质:一个因数扩大若干倍,必须把另一个因数缩小相同的倍数,其积不变。

a×b = (a×c) ×( b÷c)
除法的运算性质:商不变性质,两个数相除,被除数和除数同时扩大或者缩小相同的一个数(0除外),商的大小不变。 

a÷b=(a×c)÷(b×c)    a÷b=(a÷c)÷(b÷c )
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。  

a÷b÷c = a÷(b×c)


乘法的意义:
求几个相同加数的和是多少?

例如:27×13,表示求13个27的和是多少?也可以表示求27的13倍是多少?
求一个数的若干倍是多少?例如:27×0.3或者的意义:求27的十分之三是多少?


除法的意义:
一个数里有几个除数。简称“包含除法”。

例如,24÷3表示24里面包含有几个3。
一个数是另一个数的多少倍。

例如:24÷3,表示24是3的多少倍?
把一个数平均分成若干份,每份是多少?简称“等分除法”。

例如:24÷3,表示把24平均分成3份,每份是多少?
已知一个数的几分之几是多少,求这个数。
例如:,表示:已知一个数的三分之一是24,求这个数。

整除与除尽
整除:甲数除以乙数(甲、乙为自然数),商是整数,余数为零。就说甲数能被乙数整除。
除尽:甲数除以乙数(乙数不为零),商是有限数。就说甲数能被乙数除尽。
整除可以说是除尽,但除尽就不能说一定叫整除。例如:1÷5=0.2,叫除尽,但不叫整除。因为商是小数。又如:10÷3=3……1,既不叫整除,(因为余数不为零)也不叫除尽。
约数和倍数:当甲数能被乙数整除时,就说甲数是乙数的倍数,乙数是甲数的约数。这两个概念都是相对而存在。一个自然数,不存在是否倍数与约数。例如:“3是约数”,就是一个错误说法。只能是对3、6、9、……等数而言,是其中某个数的约数。
奇数与偶数:凡是能被2整除的数叫偶数,反之,不能被2整除的数叫奇数
质数(素数)与合数:一个数的约数只有1和它本身的数叫做质数,也叫素数。反之,一个数的约数除了1和它本身以外,还有其他的约数,这个数就叫合数。
由于1的约数只有1个,所以1既不是质数,也不是合数
公约数:几个数公有的约数,叫做公约数。它的个数是有限的,既有最大的,也有最小的。
互质数:两个数的公约数只有1,而没有其他公约数的,这两个数就叫互质数。
质数与互质数:两个质数,不能肯定就是互质数。只有两个不相同的质数,才能肯定是互质数。另外,两个合数既可能是互质数,也可能不是互质数,但不能说两个合数一定不是互质数。
质因数:把一个合数分解成几个质数相乘的形式,这样的质数叫做质因数。
分解质因数:把一个合数分解成几个质数相同的形式,就叫做分解质因数。
公倍数:几个数公有的倍数,叫做公倍数。它的个数是无限的,只有最小的,没有最大的。
最大公约数:几个数公有的约数中,最大的一个就叫做这几个数的最大公约数。
最小公倍数:几个数公有的无限个倍数中,最小的一个,就叫做这几个数的最小公倍数。
能被2整除的判断方法:一个数能否被2整除,只要看这个数的末尾是否有0、2、4、6、8这五个数的其中一个即可。
能被5整除的判断方法:一个数能否被5整除,只要看这个数的末尾是否有0、5这两个数的其中一个即可。
能被3整除的判断方法:一个数能否被3整除,只要看这个数的各个数位上的数字和能否被3整除。
分数单位:分子为1分母不为零的真分数,叫这个分数的分数单位(带分数要化成假分数)。
分数化有限小数的判断方法:一个分数能否化成有限小数,主要看分母(这里的分数一定是最简分数)是不是只有质因数“2或5”。掺杂任何其他质因数,都不能化成有限小数,反之,就一定能化成有限小数。
分数的基本性质:一个分数的分子、分母同时乘上或除以相同的数(零除外),分数的大小不变,这叫分数的基本性质。
分数的通分、约分
通分:把几个单位不同的分数,化成相同单位,且大小不变的分数,叫做通分。
约分:把一个分数化成同它相等的,分子、分母较小的分数,叫做约分。
最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数乘整数:用分数的分子和整数相乘的积作分子,分母不变。
分数乘分数:用分子相乘的积作分子,分母相乘的积作为分母。
分数除以整数(0除外):等于分数乘以这个整数的倒数。
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数又叫百分率或百分比。百分数是特殊分数。特征是分母为100,采用符号“%”(叫做百分号)来表示。分子可以是整数,也可以是小数。
小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
百分数化成小数:只要把百分号去掉,同时把小数点向左移动两位。
分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
百分数化成分数:先把百分数改写成分数,能约分的要约成最简分数。
百分率:两个相同量的比的比值,用百分数和的形式表示时,这个比值叫做这两个量的百分率,也叫百分比。通常的“××率”就是百分数。如“出勤率”等。
方程式:含有未知数的等式叫方程式。
一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程
准确数与近似数(近似值):与实际情况完全符合的数,叫做准确数。与实际情况接近而有一定误差的数,叫做近似数(或叫近似值)。
名数与不名数:量数与计量单位名称合起来叫做名数。例如:7米、18千克、9时25分等都叫名数。没有带单位名称的数,叫做不名数。如2、4、6、8等,都叫不名数。
单名数与复名数:只含有一个计量单位名称的名数叫做单名数。 例如7米、18千克等都叫做单名数。
含有两个或者两个以上的同类计量单位名称的名数,叫做复名数。例如:2米3分米5厘米,8小时33分,8吨8千克等都叫复名数。
高级单位与低级单位:计量单位较大的叫做高级单位,计量单位较小的叫做低级单位。高、低级单位是相对的,没有单个的高、低级单位的名数。
公历年的平年、闰年
平年:把公历年份除以4(这里不是整百的公历年份)有余数时,就把这一年叫做平年,计365天。其中二月份有28天。
闰年:把公历年份除以4(这里不是整百的公历年份)余数为零时,就把这一年叫做闰年,计366天。其中二月份有29天。如果年份是整百的,则除以400,再看余数。
时刻与时间:时刻表示一天内某一个特指的时候,例如上午8时30分开会,这里的“8时30分”这是时刻。
时间表示两个是期或两个时刻的间隔。例如,做作业用去30分钟,这里的“30分钟”就是时间。
比和比值:比:两个数相除,叫做两个数的比。一般地当数a除以b(b≠0)就叫做a与b的比,记作a:b。也可以用分数形式表示为。
比值:比的前项除以后项所得的商,叫做比值。比和比值有本质的不同。如既可看作是比,又可看作是比值。
比的化简:把一个比化为最好简整数比,叫做比的化简。一般情况下,化简以后的比,前后两项为互质数。
比例:表示两个比相等的式子叫做比例 。 
 如3:6=9:18
比例的基本性质:在比例里,两外项之积等于两内项之积。
解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。 
 用字母表示:X/Y=K(一定)    kx=y
反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。用字母表示:XY=K(一定)k / x = y
利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
代数:代数就是用字母代替数。
代数式:用字母表示的式子叫做代数式。如:3x =ab+c

直线:没有端点,可以向两端无限延长。
射线:只有一个端点。可以向一端无限延长。
线段:有两个端点。射线和线段都是直线的一部分。两点之间,线段最短。
垂线、垂足:两条直线相交,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,其交点叫垂足。从直线外一点到直线所画的线段中,垂线最短。
角:锐角(小于90的角)、直角(等于90的角)、钝角(大于90而小于180的角)、平角(等于180的角)、周角(等于360的角)
平行线:在同一平面内的两条不相交的直线,叫做平行线。
面积和地积:面积是用来表示一个物体的表面或者平面的大小。地积就是土地的面积。
体积和容积(容量):体积:用来表示物体所占空间的大小,叫做体积。
容积:一个容器所能容纳物体的体积,叫做容积或容量

数量关系计算公式                     
1、加数+加数=和              一个加数=和-另一个加数
2、被减数-减数=差 
     减数=被减数-差      被减数=减数+差
3、因数×因数=积 
       一个因数=积÷另一个因数
4、被除数÷除数=商 
     除数=被除数÷商        被除数=商×除数
5、有余数的除法: 被除数=商×除数+余数
6、单价×数量=总价 
     总价÷单价=数量    总价÷数量=单价
7、单产量×数量=总产量
8、速度×时间=路程 
           路程÷速度=时间    路程÷时间=速度
9、工作效率×工作时间=工作总量 
     工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
10、每份数×份数=总数 
   总数÷每份数=份数    总数÷份数=每份数
11、倍数×倍数=几倍数 
 几倍数÷1倍数=倍数      几倍数÷倍数=1倍数
常见应用题类型
和差问题:已知两个数的和与差,求这两个数的应用题,叫做和差问题。
一般关系式有:(和-差)÷2=较小数 
   (和+差)÷2=较大数

和倍问题
和÷(倍数-1)=小数 
     小数×倍数=大数  (或者和-小数=大数)

差倍问题:已知两个数的差及两个数的倍数关系,求这两个数的应用题,叫做差倍问题。基本关系式是:两数差÷倍数差=较小数        差÷(倍数-1)=小数
 
         小数×倍数=大数      (或 小数+差=大数)
例:有两堆煤,第二堆比第一堆多40吨,如果从第二堆中拿出5吨煤给第一堆,这时第二堆煤的重量正好是第一堆的3倍。原来两堆煤各有多少吨?
分析:原来第二堆煤比第一堆多40吨,给了第一堆5吨后,第二堆煤比第一堆就只多40-5×2吨,由基本关系式列式是:
(40-5×2)÷(3-1)-5 =(40-10)÷2-5 =30÷2-5 =15-5=10(吨)第一堆煤的重量
10+40=50(吨) →第二堆煤的重量
答:第一堆煤有10吨,第二堆煤有50吨。

还原问题:已知一个数经过某些变化后的结果,要求原来的未知数的问题,一般叫做还原问题。
还原问题是逆解应用题。一般根据加、减法,乘、除法的互逆运算的关系。由题目所叙述的的顺序,倒过来逆顺序的思考,从最后一个已知条件出发,逆推而上,求得结果。
例:仓库里有一些大米,第一天售出的重量比总数的一半少12吨。第二天售出的重量,比剩下的一半少12吨,结果还剩下19吨,这个仓库原来有大米多少吨?
分析:如果第二天刚好售出剩下的一半,就应是19+12吨。第一天售出以后,剩下的吨数是(19+12)×2吨。以下类推。
列式:[(19+12)×2-12]×2 =[31×2-12]×2 
 =[62-12]×2  =50×2=100(吨)
答:这个仓库原来有大米100吨。

植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数

置换问题:题中有二个未知数,常常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算。其结果往往与条件不符合,再加以适当的调整,从而求出结果。
例:一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。这个集邮爱好者买这两种邮票各多少张?
分析:先假定买来的100张邮票全部是20分一张的,那么总值应是20×100=2000(分),比原来的总值多2000-1880=120(分)。而这个多的120分,是把10分一张的看作是20分一张的,每张多算20-10=10(分),如此可以求出10分一张的有多少张。
列式:(2000-1880)÷(20-10) 
 =120÷10 =12(张)→10分一张的张数
100-12=88(张)→20分一张的张数或是先求出20分一张的张数,再求出10分一张的张数,方法同上,注意总值比原来的总值少。

盈亏问题(盈不足问题):题目中往往有两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题)。解答这类问题时,应该先将两种分配方案进行比较,求出由于每份数的变化所引起的余数的变化,从中求出参加分配的总份数,然后根据题意,求出被分配物品的数量。其计算方法是:
当一次有余数,另一次不足时:每份数=(余数+不足数)÷两次每份数的差
当两次都有余数时: 总份数=(较大余数-较小数)÷两次每份数的差
当两次都不足时:总份数=(较大不足数-较小不足数)÷两次每份数的差
例1、解放军某部的一个班,参加植树造林活动。如果每人栽5棵树苗,还剩下14棵树苗;如果每人栽7棵,就差4棵树苗。求这个班有多少人?一共有多少棵树苗
分析:由条件可知,这道题属第一种情况。 列式:(14+4)÷(7-5)=18÷2= 9(人)
5×9+14 =45+14 =59(棵) 
 或:7×9-4  =63-4 =59(棵)
答:这个班有9人,一共有树苗59棵。

年龄问题:年龄问题的主要特点是两人的年龄差不变,而倍数差却发生变化。
常用的计算公式是:
成倍时小的年龄=大小年龄之差÷(倍数-1)
几年前的年龄=小的现年-成倍数时小的年龄
几年后的年龄=成倍时小的年龄-小的现在年龄
例父亲今年54岁,儿子今年12岁。几年后父亲的年龄是儿子年龄的4倍?
(54-12)÷(4-1)=42÷3 =14(岁)→儿子几年后的年龄
14-12=2(年)→2年后
答:2年后父亲的年龄是儿子的4倍。
例2、父亲今年的年龄是54岁,儿子今年有12岁。几年前父亲的年龄是儿子年龄的7倍?
(54-12)÷(7-1)=42÷6=7(岁)→儿子几年前的年龄
12-7=5(年)→5年前
答:5年前父亲的年龄是儿子的7倍。
例3、王刚父母今年的年龄和是148岁,父亲年龄的3倍与母亲年龄的差比年龄和多4岁。王刚父母亲今年的年龄各是多少岁?
(148×2+4)÷(3+1) 
 =300÷4  =75(岁)→父亲的年龄
148-75=73(岁)→母亲的年龄
答:王刚的父亲今年75岁,母亲今年73岁。
或:(148+2)÷2 =150÷2 =75(岁) 75-2=73(岁)

鸡兔同笼问题:已知鸡兔的总只数和总足数,求鸡兔各有多少只的一类应用题,叫做鸡兔问题,也叫“龟鹤问题”、“置换问题”
一般先假设都是鸡(或兔),然后以兔(或鸡)置换鸡(或兔)。常用的基本公式有:
(总足数-鸡足数×总只数)÷每只鸡兔足数的差=兔数
(兔足数×总只数-总足数)÷每只鸡兔足数的差=鸡数
例:鸡兔同笼共有24只。有64条腿。求笼中的鸡和兔各有多少只?
 
   (64-2×24)÷(4-2)=(64-48)÷(4-2)=16 ÷2 =8(只)→兔的只数
 
   24-8=16(只)→鸡的只数
 
   答:笼中的兔有8只,鸡有16只。

牛吃草问题(船漏水问题):若干头牛在一片有限范围内的草地上吃草。牛一边吃草,草地上一边长草。当增加(或减少)牛的数量时,这片草地上的草经过多少时间就刚好吃完呢?
例1、一片草地,可供15头牛吃10天,而供25头牛吃,可吃5天。如果青草每天生长速度一样,那么这片草地若供10头牛吃,可以吃几天?
分析:一般把1头牛每天的吃草量看作每份数,那么15头牛吃10天,其中就有草地上原有的草,加上这片草地10天长出草,以下类推……其中可以发现25头牛5天的吃草量比15头牛10天的吃草量要少。原因是因为其一,用的时间少;其二,对应的长出来的草也少。这个差就是这片草地5天长出来的草。每天长出来的草可供5头牛吃一天。如此当供10牛吃时,拿出5头牛专门吃每天长出来的草,余下的牛吃草地上原有的草。
(15×10-25×5)÷(10-5)=(150-125)÷(10-5)=25÷5 =5(头)→可供5头牛吃一天。
 
 150-10×5 =150-50 =100(头)→草地上原有的草可供100头牛吃一天
 
 100÷(10-5)=100÷5 =20(天)
 
 答:若供10头牛吃,可以吃20天。
例2、一口井匀速往上涌水,用4部抽水机100分钟可以抽干;若用6部同样的抽水机则50分钟可以抽干。现在用7部同样的抽水机,多少分钟可以抽干这口井里的水?
(100×4-50×6)÷(100-50)=(400-300)÷(100-50)=100÷50 =2
400-100×2 =400-200=200
 
 200÷(7-2)=200÷5 =40(分)
 
 答:用7部同样的抽水机,40分钟可以抽干这口井里的水。

公约数、公倍数问题:运用最大公约数或最小公倍数解答应用题,叫做公约数、公倍数问题。
 
 例1:一块长方体木料,长2.5米,宽1.75米,厚0.75米。如果把这块木料锯成同样大小的正方体木块,不准有剩余,而且每块的体积尽可能的大,那么,正方体木块的棱长是多少?共锯了多少块?
 
 分析:2.5=250厘米 1.75=175厘米0.75=75厘米
其中250、175、75的最大公约数是25,所以正方体的棱长是25厘米。
(250÷25)×(175÷25)×(75÷25)=10×7×3 =210(块)
答:正方体的棱长是25厘米,共锯了210块。
例2、两啮合齿轮,一个有24个齿,另一个有40个齿,求某一对齿从第一次接触到第二次接触,每个齿轮至少要转多少周?
 
 分析:因为24和40的最小公倍数是120,也就是两个齿轮都转120个齿时,第一次接触的一对齿,刚好第二次接触。
 
 120÷24=5(周) 120÷40=3(周)
答:每个齿轮分别要转5周、3周。

相遇问题
相遇路程=速度和×相遇时间 
 相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间

追及问题
追及距离=速度差×追及时间 追及时间=追及距离÷速度差 
 速度差=追及距离÷追及时间

流水问题
顺流速度=静水速度+水流速度 
       

逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2 
     

水流速度=(顺流速度-逆流速度)÷2

浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量

利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)

分数应用题:指用分数计算来解答的应用题,叫做分数应用题,也叫分数问题。
分数应用题一般分为三类:
1.求一个数是另一个数的几分之几。
2.求一个数的几分之几是多少。
3.已知一个数的几分之几是多少,求这个数。
其中每一类别又分为二种,其一:一般分数应用题;其二:较复杂的分数应用题。

工程问题:它是分数应用题的一个特例。是已知工作量、工作时间和工作效率,三个量中的两个求第三个量的问题。
解答工程问题时,一般要把全部工程看作“1”,然后根据下面的数量关系进行解答:
工作效率×工作时间=工作量
工作量÷工作时间=工作效率            

工作量÷工作效率=工作时间

百分数应用题:这类应用题与分数应用题的解答方式大致相同,仅求“率”时,表达方式不同,意义不同。

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注