当前位置: 首页资讯正文 初中数学辅助线典型用法汇集,中考生必须掌握! 今天,王老师为同学们整理了初中数学辅助线典型用法汇集,中考生必须掌握! ►三角形中常见辅助线的添加 1. 与角平分线有关的 (1) 可向两边作垂线。 (2)可作平行线,构造等腰三角形 (3)在角的两边截取相等的线段,构造全等三角形 2. 与线段长度相关的 (1) 截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可 (2) 补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可 (3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。 (4)遇到中点,考虑中位线或等腰等边中的三线合一。 3. 与等腰等边三角形相关的 (1)考虑三线合一 (2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60 ° ►四边形中常见辅助线的添加 特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需 要添加辅助线。下面介绍一些辅助线的添加方法。 1. 和平行四边形有关的辅助线作法 平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。 (1) 利用一组对边平行且相等构造平行四边形 (2)利用两组对边平行构造平行四边形 (3)利用对角线互相平分构造平行四边形 2. 与矩形有辅助线作法 (1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题 (2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少. 3. 和菱形有关的辅助线的作法 和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题. (1)作菱形的高 (2)连结菱形的对角线 4. 与正方形有关辅助线的作法 正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正 方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线 5. 与梯形有关的辅助线的作法 和梯形有关的辅助线的作法是较多的.主要涉及以下几种类型: (1)作一腰的平行线构造平行四边形和特殊三角形 (2)作梯形的高,构造矩形和直角三角形 (3)作一对角线的平行线,构造直角三角形和平行四边形 (4)延长两腰构成三角形 (5)作两腰的平行线等 ►圆中常见辅助线的添加 1. 遇到弦时(解决有关弦的问题时) 常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。 作用: (1) 利用垂径定理 (2)利用圆心角及其所对的弧、弦和弦心距之间的关系 (3)利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量 2. 遇到有直径时,常常添加(画)直径所对的圆周角 作用:利用圆周角的性质得到直角或直角三角形 3. 遇到90度的圆周角时 ,常常连结两条弦没有公共点的另一端点 作用:利用圆周角的性质,可得到直径 4. 遇到弦时,常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点 链接