1、在一根粗钢管上接细钢管。如果接2根细钢管共长18米,如果接5根细钢管共长33米。一根粗钢管和一根细钢管各长多少米? 想:根据题意,33米米比18米长的米数正好是3根细钢管的长度,由此可求出一根细钢管的长度,然后求一根粗钢管的长度。 解:(33-18)÷(5-2)=5(米) 18-5×2=8(米) 答:一根粗钢管长8米,一根细钢管长5米。 2、水泥厂原计划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原计划每天生产水泥多少吨? 想:由题意知,实际10天比原计划10天多生产水泥(4.8×10)吨,而多消费的这些水泥按原计划还需用(12-10)天才能完成,也就是说原计划(12-10)天能生产水泥(4.8×10)吨。 解:4.8×10÷(12-10)=24(吨) 答:原计划每天生产水泥24吨。 3、学校举办歌舞晚会,共有80人参加了表演。其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人? 想:由题意知唱歌的70人中也有跳舞的,同样跳舞的30人中也有唱歌的,把两者相加,这样既唱歌又跑舞的就统计了两次,再减去参加表演的80人,就是既唱歌又跳舞的人数。 解:70+30-80=100-80=20(人) 答:既唱歌又跳舞的有20人。
4、学校举办语文、数学双科竞赛,三年级一班有59人,参加语文竞赛的有36人,参加数学竞赛的有38人,一科也没参加的有5人。双科都参加的有多少人? 想:参加语文竞赛的36人中有参加数学竞赛的,同样参加数学竞赛的38人中也有参加语文竞赛的,如果把二者加起来,那么既参加语文竞赛又参加数学竞赛的人数就统计了两次,所以将参加语文竞赛的人数加上参加数学竞赛的人数再加上一科也没参加的人数减去全班人数就是双科都参加的人数。 解:36+38+5-59=20(人) 答:双科都参加的有20人。
5、学校买了4张桌子和6把椅子,共用640元。2张桌子和5把椅子的价钱相等,桌子和椅子的单价各是多少元? 想:由“2张桌子和5把椅子的价钱相等”这一条件,可以推出4张桌子就相当于10把椅子的价钱,买4张桌子和6把椅子共用640元,也就相当于买16把椅子共用640元。 解:5×(4÷2)+6=16(把) 640÷16=40(元) 40×5÷2=十(元) 答:桌子和椅子的单价分别是100元、40元。 6、父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁? 想:5年前父亲的年龄是(45-5)岁,儿子的年龄是(45-5)÷4岁,再加上5就是今年儿子的年龄。 解:(45-5)÷4+5=10+5=15(岁) 答:今年儿子15岁。
7、有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入乙桶18千克,两桶油就一样重,原来每桶各有多少千克油? 想:“如果从甲桶倒入乙桶18千克,两桶油就一样重“可推出:甲桶油的重量比乙桶多(18×2)千克,又知“甲桶油重是乙桶油重的4倍“,可知(18×2)千克正好是乙桶油重量的(4-1)倍。 解:18×2÷(4-1)=12(千克) 12×4=48(千克) 答:原来甲桶有油48千克,乙桶有油12千克。 8、光明小学举办数学知识竞赛,一共20题。答对一题得5分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,答错几道,有几题没答? 想:根据题意,20题全部答对得100分,答错一题将失去(5+3)分,而不答仅失去5分。小丽共失去(100-79)分。再根据(100-79)÷8=2(题)……5(分),分析答对、答错和没答的题数。 解:(5×20-75)÷8=2(题)……5(分) 20-2-1=17(题) 答:对答17题,答错2题,有1题没答。 9、甲列火车长240米,每秒行20米;乙列火车长264米,每秒行16米,两车相向而行,从两车头相遇到两车尾相离需要几秒? 想:“从两车头相遇到两车尾相离”,两车所行的路程是两车身长之和,即(240+264)米,速度之和为(20+16)米。根据路程、速度和时间的关系,就可求得所需时间。 解:(240+264)÷(20+16)=504÷30=14(秒) 答:从两车头相遇到两车尾相离,需要14秒。 10、一列火车长600米,通过一条长1150米的隧道,已知火车的速度是每分700米,问火车通过隧道需要几分? 想:火车通过隧道是指从车头进入隧道到车尾离开隧道,所行的路程正好是车身与隧道长度之和。 解:(600+1150)÷700=1750÷700=2.5(分) 答:火车通过隧道需2.5分。
声明:本公众号尊重原创,素材来源于网络,好的实质值得分享,如有侵权请联系删除。
本文链接: https://www.yizhekk.com/0152264868.html