注意:基本公式中(1)式适用于一切变速运动,其他各式只适用于匀变速直线运动。
对匀变速直线运动公式作进一步的推论,是掌握基础知识、训练思维、提高本领的一个重要途径,掌握运用的这些推论是解决一些特殊问题的重要手段。
推论1 做匀变速直线运动的物体在中间时候的即时速度等于这段时间的平均速度,即
推导:设时间为t,初速v0,末速为vt,加速度为a,根据匀变速直线运动的速度公式v =v0+at
推论2 做匀变速直线运动的物体在一段位移的中点的即时速度
推导:设位移为S,初速v0,末速为vt,加速度为a,根据匀变速直线运动的
推论3 做匀变速直线运动的物体,如果在连续相等的时间间隔t内的位移分别为S1、S2、S3……Sn,加速度为a,则
点拨:只要是匀加速或匀减速运动,相邻的连续的相同的时间内的位移之差,是一个与加速度a与时间“有关的恒量”.这也提供了一种加速度的测量的方法:
即,只要测出相邻的相同时间内的位移之差△S和t,就容易测出加速度a。
推论4 初速度为零的匀变速直线运动的位移与所用时间的平方成正比,即t秒内、2t秒内、3t秒内……nt秒内物体的位移之比S1:S2:S3:…:Sn=1:4:9:…:n2
从以上推导可知解决这些问题主要要理解:连续的时间内、连续相等的时间内、连续相等的位移的含义、要克服存在的思维障碍。
利用匀变速直线运动的推论解题,常可收到化难为易,简捷明快的效果。
总结:自由落体运动就是初速度v0=0,加速度a=g的匀加速直线运动。
上升阶段看做末速度为零,加速度大小为g的匀减速直线运动;
下降阶段为自由落体运动(初速为零、加速度为g的匀加速直线运动);
其二是整体法:把竖直上抛运动的上升阶段和下降阶段看成整个运动的两个过程。整个过程初速为
本文链接: https://www.yizhekk.com/0138306497.html